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Experimental investigations of shear layer instability have shown that some 
obviously essential features of the instability properties cannot be described by 
the inviscid linearized stability theory of temporally growing disturbances. 
Therefore an attempt is made to obtain better agreement with experimental 
results by means of the inviscid linearized stability theory of spatially growing 
disturbances. Thus using the hyperbolic-tangent velocity profile the eigenvalues 
and eigenfunctions were computed numerically for complex wave-numbers and 
real frequencies. The results so obtained showed the tendency expected from the 
experiments. The physical properties of the disturbed flow are discussed by means 
of the computed vorticity distribution and the computed streaklines. It is found 
that the disturbed shear layer rolls up in a complicated manner. Furthermore, 
the validity of the linearized theory is estimated. The result is that the error due 
to the linearization of the disturbance equation should be larger for the vorticity 
distribution than for the velocity distribution, and larger for higher disturbance 
frequencies than for lower ones. Finally, it can be concluded from the com- 
parison between the results of experiments and of both the spatial and temporal 
theory by Freymuth that the theory of spatially-growing disturbances describes 
the instability properties of a disturbed shear layer more precisely, a t  least for 
small frequencies. 

1. Introduction 
This paper is concerned with the hydrodynamic instability of boundary layers 

that are not bounded by walls and, therefore, are called free boundary layers or 
shear layers. They occur in jets and wakes, and a characteristic feature of these 
velocity profiles is that they have inflexion points. 

It has already been shown by Rayleigh (1880) that velocity profiles with 
inflexion points in an inviscid fluid are unstable relative to certain wavy disturb- 
ances. The instability mechanism of free boundary layers is an inviscid one, 
caused by induction effects, and viscosity has only a damping influence (cf. Lin 
1955). Furthermore, for large Reynolds numbers the flow in a, free boundary 
layer is nearly parallel. Thus results obtained by means of the inviscid linearized 
stability theory for unidirectional flow may then be applied to free boundary 
layers at large Reynolds numbers. 

Stability calculations for special shear layers a t  finite Reynolds numbers by 
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Lessen (1950), Esch (1957) and Betchov & Szewczyk (1963) have in fact shown 
that for large Reynolds numbers the neutral curve approaches asymptotically 
the neutral value predicted by inviscid theory and that for finite Reynolds 
numbers the amplification of disturbances is always smaller than in the inviscid 
case. The same result was obtained by Tatsumi & Kakutani (1958), who dealt 
with the instability of a plane jet. Also experimental investigations of free 
boundary layers of plane and axisymmetric jets carried out by Sat0 (1960), 
Schade & Michalke (1962) and Michalke & Wille (1965) have shown that for 
large Reynolds numbers the instability properties of free boundary layers are 
not noticeably affected by viscosity. Furthermore, it  was found by Michalke & 
Schade (1963) that, as far as the instability at  infinite Reynolds number is 
concerned, jet boundary layers behave like a single shear layer, if the width of 
the jet core is large compared with the thickness of the jet boundary layer. 
Experimental results obtained from jet boundary layers that satisfy this con- 
dition may then be compared with theoretical results for shear layers provided 
that the velocity profiles are comparable in both cases. 

A shear layer at large Reynolds numbers was investigated by Sat0 (1956,1959), 
using a hot-wire technique. He found that artificial disturbances excited by 
sound from a loudspeaker grow exponentially with downstream distance in the 
first stage. In  order to compare the evaluated growth rates with theoretical 
results obtained from the inviscid linearized stability theory of Lessen (1950) for 
a special shear layer, Sat0 transformed linearly the time-dependent growth rate 
of the disturbances assumed in the theory into a spatial growth rate by means of 
the disturbance phase velocity. This transformation was first used by Schubauer 
& Skramstad (1947). Sat0 found that the measured growth rates were of the 
same order of magnitude as the transformed theoretical ones. Concerning the 
phase velocity the agreement was equally good. Also Sat0 (1959) measured the 
amplitude distribution of the velocity fluctuations. As long as the disturbances 
grew exponentially, showing that the linearized theory was applicable, the 
fundamental component of the velocity fluctuation-which should be equivalent 
to the disturbance velocity component in the basic flow direction-showed a 
phase reversal; i.e. it  became zero at one point. This phase reversal was, however, 
not placed at the critical layer, but far outside in a region where the velocity of 
the basic flow was small. Contrary to this the theoretical amplitude distribution 
of the neutral disturbance-the only one available to Sato-had a phase reversal 
at the critical layer. Sat0 supposed that better agreement would be expected 
using the eigenfunctions of (temporally) amplified disturbances. 

A similar distribution of velocity fluctuations was observed by Wehrmann & 
Wille (1958) in a disturbed axisymmetric jet boundary layer the thickness of 
which was small compared with the width of the jet core. Wehrmann (1960) and 
Fabian (1960) explained this distribution of velocity fluctuation which showed 
also a distinct phase reversal with the existence of ring vortices in the jet boundary 
layer. An attempt to explain the formation of vortices in a free boundary layer 
by means of the inviscid linearized stability theory was made by Schade & 
Michalke (1962). They approximated a measured boundary-layer profile of the 
axisymmetric jet by a linear broken-line profile so that the maximum slope of 
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both profiles was the same. The comparison of the wave-numbers for temporally 
amplified disturbances of the broken-line profile with the measured values 
showed relatively good agreement. But the experimental results showed that 
there was no strict proportionality between wave-number and disturbance 
frequency, contrary to the theory. Therefore the measured phase velocity 
depended also on the frequency, while in the theory it was constant. 

The amplification of artificially excited disturbances in plane and axisymmetric 
jet boundary layers was investigated by Michalke & Wille (1965). In  both cases 
an exponential growth of the disturbances with increasing downstream distance 
was found. But, if the above-mentioned space-time transformation was used, 
the comparison of these growth rates with the theoretical ones of the corre- 
sponding broken-line profile showed only order-of-magnitude agreement. It was 
supposed that the difference in the results was caused by the very rough approxi- 
mation of the measured velocity profile by a linear broken-line profile. Therefore 
a stability calculation according to inviscid linearized theory was carried out by 
Michalke ( 1964) using the smooth hyperbolic-tangent velocity profile, which is 
a very good approximation to the measured jet boundary-layer profiles. For 
temporally amplified disturbances the eigenvalues and eigenfunctions were com- 
puted numerically. The result, however, was disappointing: application of the 
tanh profile yielded no better agreement between theory and experiment, 
although in the meantime more detailed and improved measurements had been 
presented by Freymuth (1965). Contrary to the experimental results the calcula- 
tion yielded proportionality between the wave-number and the frequency and 
a constant phase velocity. For the fundamental component of the velocity 
fluctuation the discrepancy was still larger. Only for the neutral disturbance 
did a phase reversal occur, and this a t  the critical layer, i.e. a t  the location of the 
inflexion point. For temporally amplified disturbances, however, the theory does 
not yield a phase reversal at all, while for the spatially amplified disturbances in 
the experiment a phase reversal is found. Thus the question arose as to what 
caused these discrepancies. One reason was supposed to lie in the variation of 
the velocity profile in the near neighbourhood of the nozzle by which the jet was 
generated. There the boundary-layer profile at the nozzle wall changes into the 
free boundary-layer profile of the jet. This is connected with a strong shift in the 
position of the inflexion point of the velocity profile. But from his thorough 
experimental investigation of jet boundary-layer instability Freymuth (1965) 
came to the conclusion that the reason lies in the fact that the amplification of dis- 
turbances in free boundary layers can only be described by a stability theory for 
spatially growing disturbances. Watson (1962) had made the same suggestion for 
plane Poiseuille flow. He developed a non-linear stability theory for spatially 
growing disturbances. 

Furthermore, from theoretical considerations, Gaster (1962) came to the con- 
clusion that the growth rates obtained from a stability calculation for temporally 
growing disturbances cannot be transformed linearly with the phase velocity 
into spatial growth rates. For weak amplification only, a transformation is 
possible by means of the group velocity. In  a further paper Gaster (1965) showed 
that for strongly spatially amplified disturbances as present in shear layers the 
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eigenvalue equation has to be solved for complex wave-numbers in order to 
evaluate the spatial growth rate, and he carried out the calculation for the linear 
broken-line velocity profile. Gill ( 1965) investigated the stability of spatially 
damped disturbances of Poiseuille flow in a tube and found good agreement with 
the experimental results of Leite (1956). 

In  order to compare the instability properties of spatially growing disturbances 
in an inviscid shear layer with those of temporally growing disturbances an 
inviscid stability calculation for the hyperbolic-tangent velocity profile was 
carried out under the assumption of spatially growing disturbances. The results 
are reported below. 

2. The inviscid linearized disturbance equation in the two-dimensional 
case 

For reasons which will become evident later the inviscid linearized disturbance 
equation will be derived here in more detail. The flow of an inviscid fluid is 
governed in the two-dimensional case by the Helmholtz vorticity equation 

dQ an an an 
d t  at ax ay 
_ -  - -+u-+v- = 0. 

Here u(x, y, t )  and v(x, y, t )  denote the x- and y-components of the velocity vector 

c = (u, v, 01, (2) 
and n(x, y, t )  denotes the x-component of the vorticity defined by 

curl c = (0, 0, n). 
Thus (2) yields n = aqax - au/ay. 

(3) 

(4) 

Suppose now a unidirectional steady basic flow is given by its velocity profile 
U(y) and its vorticity distribution 

Q & Y )  = - U’, (5) 

where the prime denotes differentiation with respect to y. Further, let us super- 
impose a small disturbance EU,(Z, y, t ) ,  evl(x, y, t )  and enl(x, y, t )  upon this basic 
flow. Then inserting 

(6) 

(7)  

( 8 )  

} 
U(X,Y,t) = U(Y)+%(X,Y,t), 

v(x, Y, t )  = @4(x, y, t ) ,  

Q(x, Y, t )  = QJY) + E Q l ( X ,  y, t )  

E an,/at + [ u + EUll 6 a a , / a X  - Evl[u” - E an,/ayl= 0. 

into (1) we obtain, using ( 5 ) ,  

E is a measure of the magnitude of the disturbance. In  general the solution of 
this non-linear disturbance equation (8) will depend on the disturbance magni- 

(9) 
tude E. Only if u 9 I % ] ;  I U”] B pR,/ayI,  

can the disturbance terms in the brackets of (8) be neglected, and can we obtain 
the linearized disturbance equation 

an,lat + u an,px - u n V l  = 0, (10) 
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the solution of which depends on E no more. In  the following analysis the condi- 
tions (9) are assumed valid. Introducing a stream function $,(x, y ,  t )  by 

u1 = a$l/aY, Vl = - a$l/ax, (11)  

$l@, y, t )  = .@{$(y) ei(as-PO}, 

we can satisfy the continuity equation. If we restrict ourselves to wavy 
disturbances 

(12) 1 Ql(x, y ,  t )  = W{w(y) ec(“s-PO}, 

where a and p are constants, equations (1 l), (10) and (4) yield 

or, by elimination of (JJ, the Rayleigh equation 

( u - p/a) [$” - a”j - U”$ = 0, (14) 

is obtained. For unbounded velocity profiles the disturbances must vanish at 
infinity, so the boundary conditions are 

$(-a) = $( +co) = 0. 

Since the velocity profile is unbounded, 

lim U” = 0,  
V+*W 

and from (14) and (15) the asymptotic behaviour of $ for y-+ + co is 
$ ’ = -  a$ (17) 

and for y+ -co is f5’ = a$. (18) 

The order of the differential equation (14) can be reduced if we set 

Thus we obtain from (14) the corresponding Riccati equation in @(y) 

CD’ = a2- CD2+ U“/(U-/3/a). (20) 

With (17) and (18) the appropriate boundary conditions become 

@(+a) =-a; @(-00) = +a. (21) 

The constants a = a,+ia, and p = pr+ip5 are in general complex. a, is the 
wave-number, p the cyclic frequency or angular velocity of the disturbance and 
ai and the spatial and temporal growth rates respectively. Without loss of 
generality we can assume p, > 0. If we put ai = 0, then the amplitude of the 
disturbance depends only on y and t .  This may be called the timewise case after 
Gill (1965). On the other hand, for pi = 0 we have the spacewise case. For the 
neutral disturbance a$ = Pi = 0 and both cases have the same solution. 
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The basic flow whose instability is investigated here is given by the velocity 
profile 

V(y) = 06[1 ftanhy]. 

All quantities used here and in the following (except in the appendix) are assumed 
to be normalized with the maximum velocity U, of the shear layer and a length 
scale L. The instability properties for the timewise case of this velocity profile 
(22) were calculated by Michalke (1964). In  the following we shall treat the 
spacewise case. 

3. Evaluation of the eigenvalues for the spacewise case 
In  order to study the instability properties of the tanh velocity profile (22) in 

the spacewise case we have to integrate the differential equation (14) or (20) with 
the boundary conditions (15) and (21) respectively for real values p > 0. We 
therefore have to solve an eigenvalue problem in order to determine 

a = a(,J) = a, + iai. 

For the neutral case ai = 0 the eigenvalues are well known. They are a,, = 1 and 
/3 = 0-5, and the eigenfunction 4 = sechy. Since we are only interested in 
disturbances travelling and growing in basic flow direction, we can restrict 
ourselves to values 0 < a,, < 1, ai .c 0, and 0 < p < 0.5. 

In  order to evaluate the complex eigenvalues numerically we first introduce 
the new independent variable 

into equation (20). Then using 
z = tanhy (23) 

(24) U" = -tanhysechXy = -z(l-z2) 

we obtain 

Equation (25) was integrated numerically for a fixed value starting from 
z1 = -0-975 to z = 0 which gives O1(O), and starting from z2 = +0.975, which 
gives Q2(0). The initial values @(zJ and @(z2)  were calculated by Taylor series 
which were expanded about x = z b  up to the third-order terms. The derivatives 
at the boundaries zb were evaluated from (25) using L'Hospital's rule. For three 
arbitrarily chosen different pairs of a = a, + iai the difference 

was evaluated and improved values a were calculated from the approximated 
zeros of $'(a,., a,) by linear interpolation. This procedure was repeated until [PI 
was sufficiently small. The computation was performed on a Zuse Z23v digital 
computer using a Runge-KutteGill procedure with an integration step 

Some functions @(z) are plotted in figure 1. The eigenvalues a = a(B) are given 
IAzI = 0.025. 
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in table 1 and plotted in figure 2 together with the phase velocity c,. = &/a,. as 
a, function of br For comparison the curves for the timewise case after Michalke 
(1964) are included. We see that the curve for the spatial growth rate ( -ad) is 
only broadly similar to the curve ac,/c,. which is calculated from the timewise 

P 
0.500 
0.450 
0.400 
0.350 
0.300 
0.250 
0-225 
0.200 
0.175 
0.150 
0.125 
0.100 
0.075 
0.050 
0.206692 

% 
1 
0.925761 
0.844361 
0.753444 
0.649548 
0.527421 
0-457728 
0.382625 
0.305869 
0.235039 
0.175861 
0-128087 
0.088817 
0.055452 
0.403129 

a1 

- 0.045556 
-0*091618 
- 0.137151 
- 0.180226 
-0.215502 
- 0.226142 
- 0.227691 
- 0.215913 
- 0.190165 
- 0.156126 
-0.120373 
- 0.086273 
- 0.054846 
- 0.228425 

0 
Cr 

0.5 
0.4861 
0.4737 
0.4645 
0-4619 
0.4740 
0.4916 
0.5227 
0.5721 
0.6382 
0.7108 
0-7807 
0.8444 
0.9017 
0.5127 

TABLE 1 

1 I 1 I 1 

- 1.0 - 0.5 0 0.5 1 .o 
Z 

FIGURE 1. Solutions @(z) of equation (25) for various frequencies p :  
-, cp,(z); ----- , @,(z). 
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case using the linear transformation x = c,t with c,, = 0.5.1- The maximum 
growth rate is ( - a$) = 0.2284 and occurs at ,8 = 0-2067. There the wave-number 
ar = 0.4031 and the phase velocity c,, = 0.5127. Note that the amplification is 
very large, since the disturbance amplitude is amplified by a factor 

exp ( - 2nai/a,) M 35 
within a wavelength A. 

- a.. 

I .o 

II 

0.5 

d /--I /- / 

L /  , , , I 

0.2 

ri" 
I 

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

Pr P T  

FIGURE 2. Wave-number a,, phase velocity c, and spatial growth rate - a, 
(or uc,/c,) v8 frequency PT: - , spacewise case; ----- , timewise case. 

Furthermore, in the spacewise case the wave-number a$ is not strictly propor- 
tional to the frequency pr as in the timewise case. Thus, contrary t o  the timewise 
case, the phase velocity c, depends strongly on the frequency, especially for small 
frequencies. This behaviour, however, was observed in the experiments 
mentioned above. 

4. Evaluation of the eigenfunctions in the spacewise case 
With the computed eigenvalues we can now evaluate the eigenfunctions # by 

integrating equation (14). Since the eigenfunctions are determined except for 
an arbitrary multiplicative constant alone, we normalize the initial values 
conveniently to 

The initial gradient is found from (19) to be 
#,(O) = 1;  #a(O) = 0. (27) 

#'P) = 0) #(O)*  (28) 

Thus #'(O) = @,,(O) + i @ $ ( O ) .  (29) 
@(O),  however, is known from the evaluation of the eigenvalues (s 3). With the 
initial values (27) and (29) equation (14) was solved using a Runge-Kutta-Gill 
procedure. 

In  figures 3 and 4 the eigenfunctions #r(y) and #$(y) are shown for the 
frequencies p = 0.1, ,8 = 0.2, /3 = 0.3, and ,8 = 0.4. We see that, contrary to the 
timewise case, #,.(y) and #&y) are not symmetric and antisymmetric respectively. 

t In the timewise case the group velocity is identical with the phase velocity, since the 
phase velocity does not depend on the frequency. 
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A comparison of the eigenfunctions for the most strongly amplified disturbance 
is shown in figure 5 for both the spacewise case (p = 0.2067) and the timewise 
case (p, = 0.2223). 

Y . 
- 8  - 6  - - 4  - 2  0 2 4 

FIGURE 3. Eigenfunctions q5,(y) of the spacewise case for various frequencies 8. 

FIaURE 4. Eigenfunctions $,(y) of the spacewise case for various frequencies p. 

Y 

The derivative @(y) of the eigenfunction is related to the disturbance velocity 
component ul by (1 1). 4: and 4: are shown in figures 6 and 7. Note that for y < 0 
the zeros of both 4; and 4; occur at  nearly the same values of y. Thus the magni- 
tude of u1 becomes nearly zero at  this point and, therefore, we have a phase 

34 Fluid Mech. 23 
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reversal which is outside the critical layer (y = 0) for amplified disturbances, as 
was observed in the experiments mentioned above. The position of the phase 
reversal depends on the frequency 8, as can be seen more clearly from the plot 
of Qz) in figure 1 because of the relation 

$’ = a)$. (30) 

For p+O the phase reversal tends to z = - 1, i.e. y+-oo, and for ,8+0*5 to 
z = y = 0, i.e. to the position of the critical layer. This tendency has also been 

FIGURE 5. Comparison of the eigenfunctions #(y) for the most strongly amplified 
disturbance : __ , spacewise case p = 0.2067; -----, timewise case pr = 0.2223. 

Y 

FIUURE 6. Derivative #:(y) of the eigenfunction in the spacewise cam for 
various frequencies 8. 

observed in experiments by Freymuth (1965). In  the timewise case 14’1 is 
symmetric, and the zeros of 4; and 4: are apart from each other. Thus no sharp 
phase reversal occurs except for the neutral disturbance. 

Thus it is obvious that the theory of spatially growing disturbances includes 
many essential features of the instability properties of shear layers which are 
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known from experiment, This is not surprising from a physical point of view, 
since in the experiments the disturbances in fact grow in space and not in time. 
Thus we may conclude that the spacewise theory gives a better description of the 
shear-layer instability than the timewise case. But the verification of this state- 
ment can only be made by comparing the results of the experimental investiga- 
tions with those of both theories. This was performed by Freymuth (1965) and 
is described briefly in the appendix. 

FIGURE 7. Derivative #i(y) of the eigenfunction in the spacewise case for 
various frequencies 8. 

5. The vorticity distribution in the disturbed shear layer 
Let us now discuss some further properties of the disturbed shear layer. With 

the computed eigenfunctions we can evaluate the streamlines, the velocity field 
and the vorticity distribution of the disturbed flow. It was shown by Michalke 
(1964) that the streamlines are not particularly significant. Therefore we aha11 
first calculate the vorticity distribution, 

The distribution of the vorticity 52,(y) of the basic flow is given by (5), 

Q,,(y) = - 0.5 sech2 y, (31) 
and the disturbance vorticity O,(z, y ,  t )  is defined by (12). The complex amplitude 
function w(y)  was computed together with the eigenfunctions ( 0  4) using (13) 
from the relation 

Figures 8 and 9 show w,(y) and w,(y) for the frequencies B = 0.1, /? = 0.2, /3 = 0-3 
and p = 0.4. It is evident from (32) that for a4 + 0 the value of w,(O) is zero 
because U"(0) = 0, but for the neutral case (p = 0.5) where w,(y) = 2sechsy we 
have w,(O) = 2. Thus analogous to the timewise case there is no uniform con- 
vergence of w,(O) as p tends to the neutral value 0.5. According to (7), (12), and 
(31) the total vorticity distribution is given by 

Q(x,  y,t )  = -0.5sech2y+se-Oi"(o,(y) cos (qz -p t )  -w,(y)sin (aPx-pt)} (33) 
and is periodic in time. 

4 Y )  = -{W(u-B/.)16 (32) 

34-2 
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For a fixed time t the lines of constant vorticity can be evaluated by using an 
iteration process. They were computed for the most strongly amplified disturb- 
ance (B = 0.2067) for t = T = 2nlP and for t = 1.5T. The disturbance magnitude 
was chosen very small, namely E = 0.0005. The results are plotted in figure 10. 

-2.5 --2.0 -1.5 -1.0 

Y 
FIGURE 8. Vorticity amplitude w,(y) of the spacewise case for various frequencies p. 

1 1" 0.5 1.0 1.5 2.0 2.5 

- 0.5 

- 1.0 

- 1.5 

/ p= 0.4 t --2.O 

FIGURE 9. Vorticity amplitude w,(y) of the spacewise case for various frequencies p. 

Note that the length scale in the y-direction is enlarged by a factor 5 in order to 
show the phenomenon more clearly. We see that the lines of constant vorticity, 
which are straight lines parallel to the x-axis for the undisturbed flow ( E  = 0), are 
displaced sinuously by the disturbance. With increasing local disturbance 
magnitude 

the vorticity is redistributed causing two peaks of vorticity within a disturbance 
wavelength A, one for y < 0 and one for y > 0, the latter being smaller than the 

E(x) = ee-qX, (34) 
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former at the same x. Because of their mutual induction these peaks of vorticity 
will superimpose a rotational motion on the basic flow showing quite clearly the 
mechanism of instability. 

1 .o 
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FIGURE 10. Lines of constant vorticity of the disturbed hyperbolic-tangent velocity profile 
ia the spacewise case for the frequency /? = 0.2067 of maximum amplification at two 
different times 1; disturbance magnitude e = 0.0005 (inviscid linearized theory). 

1 I 
I 1 1  I 1 1  I I X  

05,l A 1'5A 2A 

6. The streaklines of the disturbed flow 
Since the velocity distribution of the disturbed flow according to the inviscid 

linearized theory is known, we can also calculate the motion of any particle of 
the flow. It may be of special interest to study the spatial development of the 
disturbed shear layer, which can be done by means of the streakline pattern. 
A streakline is defined as a line connecting the positions of particles at a fixed 
time which went through the same point of the flow field at  different times. In 
experiments the streaklines or their envelopes can be visualized by introducing 
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0.5 h h 1.5 h 2h 
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FIQURE 11. Streakline pattern of the disturbed hyperbolic-tangent velocity profile in the 
spacewise case for the frequency /3 = 0.2067 at four different times t ;  disturbance magni- 
tude E = 0-0005 (inviscid linearized theory). 



Spatialty growing disturbances in a shear layer 535 

smoke or dye into the flow. The velocity field of the disturbed shear layer is 
given by (6). Using (11) and (12) we obtain 

u ( x , y , t )  = 0.5[1+ tanhy] +ee-qZ{&(y) cos(a ,x-~t)-~;(y)s in(a ,x-~t)) ,  

V(.,Y,t) = s e - q [ a i # , ( y )  +a,4c(y)Icos(arx-Pt) (35) 
+ [%4,(Y) -a,+,(y)l  sin (a,x-Pt)l. 

The motion of a particle is governed by the differential equation of the path lines 

(36) dxldt = u(x(t) ,  Y(t ) ,  t ) ,  cEyldt = v(z(t) ,  Y W ,  t ) ,  

where the right-hand sides are given by (35). x(t)  and y ( t )  denote the position of 
a particle at the time t .  In  order to determine a pathline the appropriate initial 
conditions are 

For the neutral disturbance of the tanh velocity profile the streakline pattern 
was computed by Hama (1962). 

In  our calculation xo was chosen to be zero, and s = 0.0005. For the most 
strongly amplified disturbance (p = 0.2067) the pathlines of particles were calcu- 
lated numerically using a Runge-Kutta-Gill procedure starting from xo = 0 and 
yo = 0, _+ 0-4812117, & 1.0317184. These points were chosen because there the 
undisturbed vorticity no = - 0.5, - 0.4, - 0.2 respectively. In  order to plot 
each streakline for a fixed time with sufficient accuracy one has to compute 
pathlines for various initial times to which can be restricted to the interval 
0 < to < T because of the periodicity of the flow with respect to time. In  figure 11 
the shape of the streaklines is shown for the times t = T; 1-25T; 1.5T; 1.75T. 
The positions of particles started with constant time delay for each streakline are 
marked by points. Furthermore, particles starting at to = nT (n  = 0,  1, f 2, . . .) 
from its initial position are marked by a circle. 

We see that particles starting originally in the region of higher velocity ( y  > 0)  
move to the region of lower velocity ( y  < 0) ,  where they are retarded so that other 
particles started later can pass by and vice versa. Thus the streaklines show 
a tendency to roll up in a complicated manner with a coincidental folding of the 
lines. The shape of the disturbed shear layer found here is similar to that observed 
by means of the smoke technique in jet boundary layers (cf. Michalke t Wille 
1965; Freymuth 1965). 

(37) x@o) = 509 Y(t0) = Yo- 

7. Estimate of the validity of the linearized theory 
Both from the vorticity distribution (figure 10) and from the streaklines 

(figure 11) we see that the local disturbance magnitude (34) grows rapidly and 
becomes, for instance, E = 0.6185 at z = 2h. Therefore the question arises as to 
what extent is the linearized theory valid. As mentioned in $ 2  the linearization 
of equation (8) is surely justified, if both conditions (9) are satisfied. We shall 
now examine these conditions. The first one gives with (1 1) and (12) 

U(y) B ee-"i"($'I = ~14'1. (38) 

Since U ( y )  tends to 1 for y +  00 and we have 14'1 c 1 according to figures 6 and 7, 
the condition (38) is certainly satisfied for y =- 0, if the local disturbance magni- 
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tude Z is sufficiently small. On the other hand, for y+ - co the behaviour of our 
basic flow is U(y) N e2Y, but that of the disturbance is N earY.  Since we 
have a, < 1 < 2, the basic velocity vanishes more rapidly for y -+ - co than the 
disturbance velocity and, however small E may be, both velocities become com- 
parable in a certain region. Yet this may occur far outside the shear layer, and 
therefore this violation of condition (38) may be negligible. From the second con- 
dition of (9) we obtain with (12) 

Since U"-see (24)-becomes zero at the critical layer y = 0,  this condition is 
violated unless 10 '1  also vanishes a t  this point. From (32) it  follows that 

IU"] B e e - ~ i ~ l d l  = E ~ w ' ] .  (39) 

- 1.0 - 0.5 0 0.5 1 .o 
Y 

FIGURE 12. Id1 as a function of y for various frequencies /l in the spacewise case. 

This function was calculated and is plotted in figure 12 for p = 0.1, p = 0.4, and 
for the most strongly amplified disturbance with ,!I = 0.2067. It is evident that 
for amplified disturbances lw'(0)I is unequal to zero, and its value increases 
strongly, if ~3 tends to 0.5, i.e. if we approach the neutral case. Thus it follows 
that in the neighbourhood of the critical layer the non-linear terms of (8) become 
important for amplified disturbances even though the local disturbance magni- 
tude 8 is small. This was stated by Lin (1958). Note that for ,3 = 0.1 we have 
max Iw'I = 2.6, but max Id1 = 23.3 for ,!I = 0.4, although their spatial growth 
rates ( - a,) have nearly the same values. Therefore the error due to the lineariza- 
tion of equation (8) for p = 0.4 might also be one order of magnitude larger than 
for /3 = 0.1. 

Let us now estimate the total error made by the linearization of the equation 
of motion. Formally we can write the disturbance equation (8) as an integral 
equation 

sn, = -I(.[.%- V"V,]+R,) dt, (41) 
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where the quantity RQ is given by 

If we now use the solution of the linearized equation (lo), we get 

This equation is only satisfied if the residual term R, can be neglected compared 
with B aSZl/at. Now, we have 

and 

or using (ll),  (12) and (34) we find 

sasz,/at = O ( q q W l )  (44) 

(45) lRnl < 4 1% aQl/axl + 1% afi l /aYl  I, 

with 
(46) 

(47) 

Analogously we obtain a relation similar to (43) from the Euler equation of 
motion for the velocity component u1 

€U1 = I[€ aul/at - R,] at, (48) 

where 6 aul/at = o(q I+‘/) (49) 
I R,I = €2 1 u1 aUl/ax + v1 au,/ayl < ER,, (50) 

with 8, = Ia1{19’l2+ laI219l2+ 191 IWl> .  (51) 

and 

For the velocity component w1 the relation becomes 

It is quite clear that the residual terms depend (i) on the local disturbance 
magnitude E and (ii) on y and implicitly on /3. If a fixed local disturbance magni- 
tude E is assumed, the validity of the linearization will only depend on the terms 
8,, 8, and 8,. They are plotted in the figures 13-15 for p = 0.1, 0.2067 and 0.4. 
The ratios between the maximum values of 8,, 8, and Bn are 

for ,8 = 0.1 

max (8,) : max (8,) : max (8,) = 0.06 : 0.29 : 0.52 M 1 : 5 : 9; 

for ,8 = 0.2067 

max (8,) : rnax (8,) : max (8,) = 0.39 : 1.15 : 2.74 M 1 : 3 : 7; 

for ,8 = 0.4 

max (8,) : max (8,) : max (8,) = 0.68 : 2.81 : 20.20 M 1 : 4 : 30. 

It follows that for fixed frequency the residual terms connected with the velocity 
components w1 and ul are smaller than those connected with the vorticity SZ, and 



538 A .  Michulke 

t 
/I = 0.4 

Y 
FIGURE 13. 2, as a function of y for various frequencies /3 in the spacewise case. 
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FIGURE 14. %,, m a function of y for various frequencies /3 in the spacewise caae. 

Y 
FIauRE 15. a, as a function of y for various frequencies /3 in the spacewise case. 
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that, furthermore, the residual terms for small frequencies are smaller than those 
for higher frequencies. 

Thus we may conclude that the region of validity of the linearized equation 
should be larger for the velocity distribution than for the vorticity distribution 
and larger for small frequencies than for higher frequencies. Nevertheless, from 
these estimates an exact bound for the validity of the linearized equations cannot 
be derived. But from the physical meaning of the Helmholtz equation (1) a good 
criterion can be obtained as was shown by Michalke (1965). From the non-linear 
equation (1) it follows that, if a particle of the flow is moving along its pathline, 
its vorticity remains constant for all times. Suppose now that the vorticity is 
constant in time a t  the point (zo, yo) where the particles forming a streakline 
start; then it follows that the streakline has to be identical with a line of constant 
vorticity for all times. Furthermore, if the vorticity distribution for x-+ -CQ 

(where the disturbance vanishes) has an extremum, it follows from the Helmholtz 
equation that this value cannot be exceeded at any time or any point of the flow. 

Let us now examine the results of $ $ 5  and 6 by this means. At z = zo = 0 
the variation An in time of the basic vorticity Qo(y) caused by the disturbance 
vorticity is smaller than 

For the most strongly amplified disturbance the magnitude of o is IwI < 1-7.  
Then for the disturbance magnitude E = 0.0005 we find fAQl c 0.00085, which 
should be negligible compared with Qo(y). Thus the assumption that for all 
particles starting a t  zo = 0 the corresponding vorticity is Ro(y) and that the 
extremum vorticity is Qo(0) = -0.5 is justified.? The initial values yo of the 
five computed streaklines were chosen so that they would be identical with the 
lines of constant vorticity !2 = - 0.2; - 0.4; and - 0.5 respectively as described 
above. Figure 16 shows the comparison of the streaklines and the corresponding 
lines of constant vorticity for t = T and t = 1.5T. We see that outside the critical 
layer y = 0 the agreement is good up to z = 16h, where differences appear. 
Therefore we may conclude that in these regions of the flow the linearized theory 
suffices. Yet in the neighbourhood of the critical layer y = 0 we find disagreement 
even for small values of x as expected. The line of initially extremum vorticity 
0 = - 0.5 is split into two lines with a region of higher vorticity between them. 
This is not compatible with the non-linear equations. Yet we know from the 
estimates above that the error due to the linearization is expected to be smaller 
in the velocity field than in the vorticity field. Since for the calculation of the 
streaklines only the velocity field due to the linearized theory is used, it may 
therefore be supposed that the streaklines give a more correct impression of the 
vorticity distribution due to the non-linear theory than the lines of constant 
vorticity calculated by means of the linearized theory. 

The results obtained by Hama (1962) for the neutral disturbance of the 
hyperbolic-tangent velocity profile are more difficult to interpret, since there the 
calculated streaklines certainly do not correspond to lines of constant vorticity, 

t For comparison the variation A!2 in time used by Hama (1962) for his computation 
of the streaklines in the neutral case was JAR1 < 0.04, 0.08, 0.2, which seems to be 
insufficiently small in relation to the extremum basic vorticity used, !2,(0) = - 1. 

lAQl < E].R,J = E J w ] .  (56) 
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because of the relatively large vorticity variation AQ of the particles at the 
starting-points as mentioned above. But the principal statement of Hama that 
there is no vorticity concentration in the disturbed flow is not strictly correct, 
since even in the neutral case a certain vorticity concentration exists in the 
disturbed flow as was shown by Michalke (1964). 
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FIUTJRE 16. Comparison between the lines of constant vorticity and the corresponding 
streaklines for the spacewise case according to the inviscid linearized theory at two 
different times t .  Disturbance frequency p = 0-2067; disturbance magnitude E = 0-0005. 

Finally, we can conclude from the above considerations of the non-linear 
equation that in shear layers which can be treated as inviscid the streakline 
pattern visualized by smoke gives an impression of the vorticity distribution. 
But it is known from many authors, cf. Michalke & Wehrmann (1964) and Wille 
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(1963), that discrete concentrations of smoke were observed in disturbed free 
boundary layers. Freymuth (1965) has shown also that in these regions of the 
free boundary layer the flow is not noticeably affected by viscosity and can be 
treated as inviscid, if the Reynolds number is large. Thus it follows that these 
concentrations of smoke must be identical with concentrations of vorticity which 
can be interpreted a5 discrete vortices. This may be a confirmation that a dis- 
turbed free boundary layer rolls up into discrete vortices for large Reynolds 
numbers. 

Appendix 
Comparison of experimental results with those of the spatial and 

temporal theory 

Freymuth ( 1965) compared experimental results obtained from disturbed 
axisymmetric and plane jet boundary layers with those from the inviscid 
linearized stability theory of both the spacewise and timewise case. He found 
that from a distance x = 100, downstream of the nozzles from which the jets 
were produced the measured undisturbed velocity profiles can be expressed 
approximately by 

U(y)/U, = 0-5[1 i- tanh (06y/0,)], 

where 0, is the momentum thickness of the free boundary layer. Since these 
profiles depend only implicitly on the Reynolds number through change in a,, 
this dependence on the Reynolds number can be eliminated by chosing 0, as 
a characteristic length scale. The Reynolds number Rim based on the maximum 
velocity U, of the shear layer and the momentum boundary-layer thickness 0, 
was varied in the interval 61 < Ram < 334. It was confirmed by Freymuth that 
by chosing 0, as a length scale the instability properties of the disturbed shear 
layer also were independent of the Reynolds number in this interval. 

Freymuth excited artificial disturbances of various frequencies f in the jet 
boundary layer by a loudspeaker. Then he measured the wavelength h of the 
disturbances and the distribution of the velocity fluctuations by means of 
a hot-wire technique. From the wavelengths h Freymuth obtained the wave- 
numbers a, and plotted these in dimensionless form as a function of the dimen- 
sionless frequency, i.e. Strouhal number f O,/Uo, including both the corresponding 
theoretical curves of the timewise and spacewise case. We see from figure 17 that 
for f@,/U, < 0.02 the measured values agree with the spacewise rather than the 
timewise case. This can also be seen by considering the phase velocity CJU, of 
the disturbance, which is plotted in figure 18. 

Furthermore, Freymuth measured the fundamental component of the velocity 
fluctuation which is equivalent to the fluctuation component in the basic flow 
direction (uf = Isull). In  figure 19 the measured distribution of N uf is 
compared with both theoretical curves for a Strouhal number fO,/Uo = 0.008. 
Here also a better agreement is found with the spacewise theory. From the 
growth of the maximum peak of the velocity fluctuations w f  in the basic flow 
direction x Freymuth evaluated the growth rates ( - a6 0,) and plotted these as 
a function of the Strouhal numberfO,/U,. It is evident from figure 20 that for 
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fO,/U, < 0.01 the growth rates obtained experimentally agree with the space- 
wise theory. For f@,/U, > 0.01 the results are doubtful, because exponentially 
growing disturbances exist only for small values z in the basic flow direction. 
Freymuth found that, in agreement with theory ( 5  7), for increasing frequency 

0 0.005 0.010 0.015 0.020 0.025 

f @m/uo 

FIGURE 17. Non-dimensional wave-number vs Strouhal number measured in the free 
boundary layer of an axisymmetric jet (0, Uo = 8 mlsec; a, Uo = 4 m/sec) and of a plane 
jet (0, Uo = 8 m/sec) compared with the spacewise theory (-) and the timewise theory 
(-----) after Freymuth. 

0 0.005 0.010 0.015 0.020 0.025 

f @m/uo 

FIGURE 18. Non-dimensional phase velocity vs Strouhal number in the free boundary 
layer of an axisymmetric jet (0, Uo = 8m/sec; 0,  U, = 4m/sec) and of a plane jet 
(0, U, = 8 m/sec) compared with the spacewise theory (-) and the timewise theory 
(-----) after Freymuth. 
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the influence of the non-linearity becomes remarkable even for small disturb- 
ances. It may be noticed that Freymuth was unable to excite disturbances 
artificially for frequencies 0.0260 < f O,/U, < 0.0398, the higher of which limits 
is equivalent to  the neutral disturbance. 
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FIGURE 19. Amplitude distribution 19’1 of the velocity fluctuation in basic flow direction 
measured in the axisymmetric jet boundary layer (---.- ) forf@,/U, = 0.008 with the 
corresponding distribution due to the spacewise theory (-) and the timewise theory 
(-- - --) after Freymuth. 
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FIGURE 20. Spatial growth rates measured in the free boundary layer of an axispmetric 
jet (0, U,, = 8 m/sec) and of a plane jet (0, U ,  = 8 m/sec) compared with those of the 
spacewise theory (-) and the timewise theory (-----) after Freymuth. 
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Nevertheless from these experimental results we can conclude with Freymuth 
that, at least for small frequencies, the growth of disturbances in a free boundary 
layer can more precisely be described by the stability theory of spatially growing 
disturbances. 

This investigation was made at the Institut fur Turbulenzforschung of the 
Deutsche Versuchsanstalt fur Luft- und Raumfahrt e.V. a t  Berlin. The author 
wishes to express his gratitude to Prof. Dr.-Ing. R. Wille, the Director of the 
Institut, and to Dip1.-Ing. P. Freymuth for many stimulating discussions. The 
author is also much indebted to the Deutsche Forschungsgemeinschaft, Bad 
Godesberg, which kindly gave financial support for the numerical computations. 
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